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Abstract

We consider the possibility that there may be causality violation detectable at
higher energies. We take a scalar non-local theory containing a mass scale � as
a model example and make a preliminary study of how the causality violation
can be observed. We show how to formulate an observable whose detection
would signal causality violation. We study the range of energies (relative to �)
and couplings to which the observable can be used.

PACS numbers: 11.10.−z, 11.10.Lm, 11.55.Ds

1. Introduction

Non-local quantum field theories (NLQFT) have been a subject of wide research since 1950’s.
The main reason for the interest in early days has been the hope that the non-local quantum
field theory can provide a solution to the puzzling aspects of renormalization. The basic idea
was that since the divergences in a local quantum filed theory arise from product of fields at
identical spacetime point, the divergences of the local quantum field theory would be tamed if
the interaction were non-local. In particular, if the interaction scale was typically of the order
of 1/�, then momenta in loop integrals (Euclidean) would be damped when |p2| � �2. The
early work on NLQFT, starting from that by Pais and Uhlenbeck [1] and especially that of
Efimov and coworkers, has been summarized in [3]. NLQFT’s also have found application
toward description of extended particles which incorporates the symmetries of the theory in
some (non-local) form [4]. The non-commutative fields theories, currently being studied [5],
are a special variant of a NLQFT, as is evident especially in its QFT representation using the
star product. In this work, we shall focus our attention on the type of NLQFT’s formulated by
Kleppe and Woodard [6]. One of the reasons we normally insist on a local quantum field theory
is because it has micro-causality, and this generally ensures causality of the theory. One of the
consequences, therefore, that would be suspected of non-locality would be a causality violation
at the level of the S-matrix. Indeed, since at a given moment, the interaction is spread over a
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finite region in space, thus covering simultaneously space-like separated points, we expect the
interaction to induce non-causality. In view of the fact that we have not observed large-scale
causality violation, it becomes important to distinguish between theories exhibiting classical
violations of causality versus quantum violations of causality. As argued in [2], a violation of
causality at the classical level can have a larger effective range and strength, compared to the
quantum violations of causality which are suppressed by g2/16π2 per loop. We do not know
of large-scale causality violations, and as such, it is desirable that the non-local theory has
no classical violation of causality. One way known to ensure that there is no classical level
of causality violation is to require that the S-matrix of the NLQFT at the tree level coincides
with that of the local theory (� → ∞) as is arranged in the formulation of [6]. We shall
work in the context of the NLQFT’s as formulated by Kleppe and Woodard [6]. This form
of non-local QFT was evolved out of earlier work of Moffat [4], insights into structure of
non-local field equations by Eliezer and Woodard [7] and application to QED by Evens et al
[8]. This formulation has a distinct advantage over earlier attempts in several ways:

(1) There are no additional classical solutions to the non-local field equations compared to
the local ones. The non-local theory is truly a deformation of the local theory and the
meaning of quantization, as a perturbation about the classical, is not altered. This property
is not shared by non-commutative field theories.

(2) It has the same S-matrix at the tree level.
(3) Thus there is no classical violation of causality.
(4) The theory, unlike a higher derivative theory, has no ghosts and is unitary at a finite �.
(5) The theory can embody non-localized versions of local symmetries having an equivalent

set of consequences.

There are many other reasons for taking interest in these NLQFT’s. We have found such
a non-local formulation with a finite �, very useful in understanding the renormalization
program in the renormalizable field theories [9]. We have shown that this formulation enables
one to construct a mathematically consistent framework in which the renormalization program
can be understood in a natural manner. The framework does not require any violations of
mathematical rigor usually associated with the renormalization program. This framework,
moreover, made it possible to theoretically estimate the mass scale �. The non-local
formulations can also be understood [10] as an effective field theory formulation of a physical
theory that is valid up to mass scale ∼�. In such a case, the unknown physics at energy
scales higher than � (such as a structure in terms of finer constituents, additional particles,
forces, supersymmetry etc) can effectively be represented in a consistent way (a unitary,
gauge-invariant, finite (or renormalizable) theory) by the non-local theory. In other words,
the, standard model can serve as such an effective field theory [10] and will afford a model-
independent way of consistently reparametrizing the effects beyond standard model. It can be
looked upon in a number of other ways. One could think the non-locality as representing a
form factor with a momentum cut-off �[4]. One could also think of this theory as embodying
a granularity of spacetime of the scale 1/� or as an intrinsic mass scale � [6, 9, 11].

A possible ‘limitation’ of the theory is that the theory necessarily has quantum violations
of causality [6, 12]; though it can be interpreted as a prediction of the theory. In another work,
Jain and one of us explored the question with the help of the simple calculations for the simplest
field theory: the non-local version of the λφ4 theory [13]. While, in this scalar field model,
the causality violation is related to the non-locality of interaction put in by hand, so to speak,
in practice such a non-locality of interaction could arise from many possible sources. It could
arise from a fundamental length, 1/�, present in nature. It could arise from composite nature
of elementary particles. (This possibility has recently been explored [14].) In this work, we
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wish to formulate how the effect can be observed experimentally. In order to study causality
violation (CV) in the theory, it is first necessary to formulate quantities that signal CV. We
would like to construct quantities that can be measured experimentally. From this view point3,
it is appropriate to construct quantities in terms of the S-operator. Bogoliubov and Shirkov
[15] have formulated a necessary condition for causality to be preserved in particle physics
by the S-operator. This formulation is simple and at the same time extremely general in that,
it uses only (i) the phenomenologically accessible S-operator together with (ii) the most basic
notion of causality in a relativistic formulation: a cause at x shall not affect physics at any
point y unless y is in the forward light cone with respect to x. The condition is formulated as,

δ

δg(x)

(
δS[g]

δg(y)
S†[g]

)
= 0 for x <∼ y, (1)

where x <∼ y means that either x0 < y0 or x and y are space like separated. (In either
case, there exists a frame in which x0 < y0.) Section 2 gives a brief qualitative understanding
of this relation and how amplitudes indicating causality violation are constructed using this
relation. In section 2, we shall also summarize the essentials of construction of a non-local
QFT given a local one. In this section, we shall give the results for the exclusive processes φ +
φ → φ + φ in the one-loop order from [13]. In section 3, we make a comparison of the
local contribution and the non-local CV effects and find that the latter could be significant
for s � �2 and when one analyzes angular distributions. In section 4, we shall construct a
physical observable in terms of a differential cross-section dσ

d�
. This quantity involves some

higher order terms and in section 6, we shall make an estimate of them and show that under
certain conditions on coupling constant and energies they are indeed negligible and allow
observation of the observable constructed in section 3.

While, what we have presented for simplicity, is a model calculation, a similar attempt
can be made for a more realistic process in the standard model. A work, along the same
lines, but applicable to the realistic cases of experimentally observed exclusive processes
e+e− → e+e−, e+e− → μ+μ− and e+e− → τ +τ− is in progress.

2. Preliminary

In this section, we shall briefly discuss the construction of non-local field theories and the
Bogoliubov–Shirkov criterion of causality. We shall further summarize results on causality
violation calculation in [2, 13].

2.1. Non-local quantum field theory

We shall present the construction of the NLQFT as presented in [6]. We start with the local
action for a field theory, in terms of a generic field φ, as the sum of the quadratic and the
interaction part

S[φ] = F [φ] + I [φ]

and express the quadratic piece as

F [φ] =
∫

d4x φi(x)Fij φj (x).

3 There are, of course, results based on dispersion relation approach.
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We define the regularized action in terms of the smeared field φ̂, defined in terms of4 the
kinetic energy operator Fij as,

φ̂ ≡ E−1φ E ≡ exp[F/�2].

The non-locally regularized action is constructed by first introducing an auxiliary action
S[φ,ψ]. It is given by

S[φ,ψ] = F [φ̂] − A[ψ] + I [φ + ψ],

where ψ is called a ‘shadow field’ with an action

A[ψ] =
∫

d4x ψiO
−1
ij ψj ; O ≡ E2 − 1

F
.

The action of the non-local theory is defined as Ŝ[φ] = S[φ,ψ]‖
ψ=ψ[φ] where ψ[φ] is the

solution of the classical equation δS
δψ

= 0.
The vertices are unchanged but every leg can connect either to a smeared propagator

iE2

F + iε
= −i

∫ ∞

1

dτ

�2
exp

{
F τ

�2

}
or to a shadow propagator (shown by a line crossed by a bar)

i[1 − E2]

F + iε
= −iO = −i

∫ 1

0

dτ

�2
exp

{
F τ

�2

}
.

In the context of the λφ4 theory, we have,

F = −∂2 − m2 I (φ) = −g

4
φ4.

We shall now make elaborative comments. The procedure constructs an action having an
infinite number of terms (each individually local), and having arbitrary order derivatives of φ.
The net result is to give convergence in the Euclidean momentum space beyond a momentum
scale � through a factor of the form exp

(
p2−m2

�2

)
in propagators. The construction is such

that there is a one-to-one correspondence between the solutions of the local and the non-local
classical field equations, (a difficult task indeed [7]). It can also be made to preserve the local
symmetries of the local action in a non-localized form [6]. The Feynman rules for the scalar
non-local theory are simple extensions of the local ones. In momentum space, these read:

(1) For the φ-propagator (smeared propagator) denoted by a straight line

i
exp

[
p2−m2+iε

�2

]
p2 − m2 + iε

= −i

�2

∫ ∞

1
dτ exp

{
τ

[
p2 − m2 + iε

�2

]}
.

(2) For the ψ-propagator denoted by a barred line

i
1 − exp

[
p2−m2+iε

�2

]
p2 − m2 + iε

= −i

�2

∫ 1

0
dτ exp

{
τ

[
p2 − m2 + iε

�2

]}
.

(3) The 4-point vertex is as in the local theory, except that any of the lines emerging from it
can be of either type. (There is accordingly a statistical factor.)

(4) In a Feynman diagram, the internal lines can be either shadow or smeared, with the
exception that no diagrams can have closed shadow loops.

A lower bound has been put on the scale of non-locality � [11, 18] from g − 2 of muon and
precision tests of standard model. It has been argued that an upper bound on the scale � can
be obtained from the requirement that renormalization program is naturally understood in a
non-local field theory setting [9, 10]. Should particles of standard model be composite, �

could naturally be related to the compositeness scale [14].
4 The choice of the smearing operator is the only freedom in the above construction. For a set of restrictions to be
fulfilled by E , see, e.g. [12].
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2.2. Bogoliubov–Shirkov causality criterion

The causality condition that we have used to investigate causality violation in NLQFT is the
one discussed by Bogoliubov and Shirkov [15]. They have shown that an S-matrix for a theory
that preserves causality must satisfy the condition of equation (2)

δ

δg(x)

(
δS(g)

δg(y)
S†(g)

)
= 0 for x <∼ y (2)

and it has been formulated treating the coupling g(x) as spacetime dependent. A simple
qualitative understanding can be provided as in [2]. The above relation is a series in g(x) and
leads perturbatively to an infinite set of equations when expanded using

S[g] = 1 +
∑
n�1

1

n!

∫
Sn(x1, . . . , xn)g(x1) · · · g(xn) dx1 · · · dxn. (3)

We consider the following expression:

H(y; g) = i
δS(g)

δg(y)
S†(g)

=
∑
n�0

1

n!

∫
Hn(y, x1, . . . , xn)g(x1) · · · g(xn) dx1 · · · dxn.

We shall write only a few of each of these coefficient functions

H1(x, y) ≡ iS2(x, y) + iS1(x)S
†
1(y) (4)

H2(x, y, z) ≡ iS3(x, y, z) + iS1(x)S
†
2(y, z) + iS2(x, y)S

†
1(z) + iS2(x, z)S

†
1(y) (5)

(for a general expression for Hn, see [13]). Then, the causality condition (2) reads,
δ

δg(x)
H(y, g) = 0 for x <∼ y

which implies,

H1(x, y) = 0 y <∼ x (6)

H2(x, y, z) = 0 y <∼ x and/or z <∼ x (7)

if causality is to be preserved. These quantities can be further simplified by the use of unitarity
relation S†(x)S(x) = I, expanded similarly in powers of g(x).

These are given by

S1(x) + S
†
1(x) = 0 (8)

S2(x, y) + S
†
2(x, y) + S1(x)S

†
1(y) + S1(y)S

†
1(x) = 0. (9)

In the case of the local theory, these causality relations ((6) and (7)) are trivially satisfied. In the
case of the non-local theories, such quantities, on the other hand, afford a way of characterizing
the causality violation. However, these quantities contain not the usual S-matrix elements
that one can observe in an experiment (which are obtained with a constant, i.e. spacetime-
independent coupling), but rather the coefficients in (3). We thus find it profitable to construct
appropriate spacetime integrated versions out of Hn(y, x1, . . . , xn). Thus, for example, we
can consider

H1 ≡
∫

d4x

∫
d4y[ϑ(x0 − y0)H1(x, y) + ϑ(y0 − x0)H1(y, x)]

= i
∫

d4x

∫
d4y S2(x, y) − i

∫
d4x

∫
d4y T [S1(x)S1(y)] (10)

5
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which can be expressed entirely in terms of Feynman diagrams that appear in the usual S-matrix
amplitudes. In a similar manner, we can formulate

H2 ≡
∫

d4x

∫
d4y

∫
d4z H2(x, y, z)ϑ(x0 − y0)ϑ(y0 − z0)

+ 5 symmetric terms (11)

and can itself be expressed in terms of Feynman diagrams.
There is a subtle point regarding the expansion (3) of the S-matrix in terms of coupling

g. In a field theory, the coupling g, which has to be the renormalized one, is not a uniquely
defined quantity. In this respect, we have to make a renormalization convention. In view of
the fact that CV, if at all observed, is expected to be observed at large energies [13], we prefer
to use g renormalized at a large energy scale; since that assures more rapid convergence of the
perturbation series. We shall therefore assume that

g̃ = Re �(4)(s = −2s0 + 2m2, t = u = s0 + m2),

where s0 is a large positive number and
√

s0 ∼ C.M. energy of collision. Here, �(4) is the
proper 4-point vertex and s = −2s0 + 2m2, t = u = s0 + m2 is a point in the unphysical region
compatible with p2

i = m2. This is equivalent to the following convention:

Re �
(4)

(n)(s = −2s0 + 2m2, t = u = s0 + m2) = 0; n = 1, 2, 3, . . .

where �
(4)

(n) refers to the n-loop contribution to �(4). The numerical value of g̃ can be determined
by comparing the total experimental cross-section with the expression for it upto a desired
order.

2.3. Results of [13] about CV

In [13], CV in a non-local scalar φ4 theory was studied. It was shown that one can construct
amplitudes, which if nonzero, necessarily imply CV. These amplitudes (H1,H2, etc of (10)
and (11)) can moreover be calculated by means of Feynman diagrams. In [13], causality
violation in two exclusive processes (i) φφ → φφ and (ii) φφ → φφφφ were studied. It
was in particular demonstrated that CV grows significantly with s. Here, we shall recall only
the result for the first process: φφ → φφ. As shown in [13], the s-channel diagram for the
CV amplitude (in the massless limit) yields (the relevant figure, figure 1, is found in a future
section) the following contribution to the transition amplitude:

�(s) = 9g̃2

4π2

∞∑
n=0

(
s

�2

)n (
1 − 1

2n

)
n((n + 1)!)

The net causality violating amplitude, considering all the three s, t, u channels, takes the
following form in the massless limit:

�Mnon-local(s, t, u) (12)

= 9g̃2

4π2

∞∑
n=0

(
1 − 1

2n

)
n((n + 1)!)

{( s

�2

)n

+

(
t

�2

)n

+
( u

�2

)n
}

. (13)

This CV amplitude is analytic in s, t, u and m.

3. Comparison of CV and local contributions

We shall compare the CV terms of (13) of [13] with the usual local amplitude to get a judgment
as to how and when the former can be isolated.

6
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3.1. Local theory

For the local theory, we find [17]

Mlocal = − 36g̃2

32π2
[ln s + ln t + ln u + constant] = − 36g̃2

32π2
ln[stu] + constant.

In the center of mass frame the Mandelstam variables are given as follows:

s = (k1 + k2)
2 = (p1 + p2)

2 = 4p2 + 4m2

t = (k1 − p1)
2 = (k2 − p2)

2 = −2p2(1 − cos θ)

u = (k1 − p2)
2 = (k2 − p1)

2 = −2p2(1 + cos θ).

So that

Mlocal = − 36g̃2

32π2
[ln stu] + constant

≈ − 36g̃2

32π2
[ln(16p6(1 − cos2 θ))] + constant.

(We have ignored m2 compared to s at high energies). The amplitude can now be expressed
in term of the Legendre polynomials as follows:

Mlocal ≡ Mlocal(cos θ)

=
∞∑
l=0

alocal
l Pl(cos θ),

where

alocal
l = 2l + 1

2

∫ +1

−1
Mlocal(cos θ)Pl(cos θ) d cos θ

= (−1)n
2l + 1

2l+1l!

∫ +1

−1
Mn

local(x)
dl−n

dxl−n
(x2 − 1)l dx

= (−1)n+1 2l + 1

2l+1l!

36g̃2

32π2

∫ +1

−1

dn

dxn
[ln(1 − x2)]

dl−n

dxl−n
(x2 − 1)l dx.

Here Mn
local(x) stands for the nth derivative of Mlocal(x) with respect to its argument. The

coefficients alocal
2 , alocal

4 , alocal
6 are obtained5 as follows:

alocal
2 = (−1)1+1 5

232!

36g̃2

32π2

∫ +1

−1

d

dx
[ln(1 − x2)]

d

dx
(x2 − 1)2 dx = 36g̃2

32π2

(
5

3

)
alocal

4 = (−1)1+1 9

254!

36g̃2

32π2

∫ +1

−1

d

dx
[ln(1 − x2)]

d3

dx3
(x2 − 1)4 dx = 36g̃2

32π2

(
9

10

)
alocal

6 = (−1)3+1 13

276!

36g̃2

32π2

∫ +1

−1

d3

dx3
[ln(1 − x2)]

d3

dx3
(x2 − 1)6 dx = 36g̃2

32π2

(
13

21

)
.

5 The above integrand has a singularity at x = ±1. This singularity is artificial and presence of m 
= 0 protects it.
It may appear that setting m 
= 0 could significantly affect the values of alocal

l . It has been checked that it is not the
case: in fact alocal

l are analytic in m.

7
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Figure 1. The s-channel diagram giving rise to the one-loop causality violating amplitude H1.

Therefore, we have

Mlocal =
∞∑
l=0

alocal
l Pl(cos θ)

= constant + alocal
2 P2(cos θ) + alocal

4 P4(cos θ) + alocal
6 P6(cos θ) + · · ·

= 36g̃2

32π2

(
constant′ +

5

3
P2(cos θ) +

9

10
P4(cos θ) +

13

21
P6(cos θ) + · · ·

)
. (14)

3.2. Non-local theory : φφ → φφ

As stated earlier, we wish to compare the CV amplitude of [13] with the local amplitude to see
how the former can be isolated. As shown in [13], the s-channel diagram for the CV amplitude
(in the massless limit) yields the following contribution to the transition amplitude:

�(s) = 9g̃2

4π2

∞∑
n=0

(
s

�2

)n (
1 − 1

2n

)
n((n + 1)!)

.

The net causality violating amplitude, considering all the three s, t, u channels, takes the
following form in the massless limit:

�Mnon-local(s, t, u) = 9g̃2

4π2

∞∑
n=0

(
1 − 1

2n

)
n((n + 1)!)

{( s

�2

)n

+

(
t

�2

)n

+
( u

�2

)n
}

.

In the center of mass frame, we have

�Mnon-local = 9g̃2

4π2

∞∑
n=0

(
1 − 1

2n

)
n((n + 1)!)

1

�2n
((4p2)n + (−2p2)n{(1 − cos θ)n + (1 + cos θ)n})

=
∑
l=0

anon-local
l Pl(cos θ).

8
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Table 1. Comparison of local and non-local contributions for coefficients of different Legendre
polynomials.

Ratio of coefficients p2

�2 = 0.1 p2

�2 = 0.2 p2

�2 = 0.4 p2

�2 = 0.8

anon-local
2
alocal

2
0.36% 1.3% 4.3% 15.8%a

anon-local
4
alocal

4
0.00032% 0.0051% 0.081% 1.3%

anon-local
6
alocal

6
9.3 × 10−10 6 × 10−8 3.8 × 10−6 2.4 × 10−4

a When the ratio is large, higher order corrections to CV cannot be ignored.

Comparison6 of Mlocal and �Mnon-local is facilitated by comparing Legendre coefficients of the
same orders. The coefficients anon-local

2 , anon-local
4 and anon-local

6 are computed as below

anon-local
2 = 5

2

∫ +1

−1
�Mnon-local(cos θ)P2(cos θ) d cos θ

= 9g̃2

4π2

[
1

3

(
p2

�2

)2

− 7

18

(
p2

�2

)3

+
2

7

(
p2

�2

)4

+ O

(
p2

�2

)5
]

anon-local
4 = 9

2

∫ +1

−1
�Mnon-local(cos θ)P4(cos θ) d cos θ = 9g̃2

4π2

[
1

70

(
p2

�2

)4

+ O

(
p2

�2

)5
]

anon-local
6 = 13

2

∫ +1

−1
�Mnon-local(cos θ)P6(cos θ) d cos θ = 9g̃2

4π2

[
1

3465

(
p2

�2

)6

+ O

(
p2

�2

)7
]
.

We summarize the ratio of the local and non-local coefficients and their numerical values in
table 1. These ratios are independent of the coupling constant g. It appears that there is a

significant chance of detecting CV only in the ratio anon-local
2

alocal
2

and when p2 � �2.
Finally we point out that while we have picked up the process φφ → φφ for simplicity,

this would not be the process for which observation of CV is the most efficient. This is so
because as pointed out in [13], the CV in this process is of higher order in p2

�2 , namely, O
(

p4

�4

)
.

CV should be more noticeable in a process such as φφ → φφφφ.

4. Construction of observables

In this section, we shall construct a quantity, partly dependent on physically observable
differential cross-section and partly on perturbative calculations, which can detect CV. Of
course, we make use of the quantity H1 of equation (10) which signals CV [2, 13]. The
S-operator has the expansion7

S = 1 + g

∫
d4x S1(x) +

g2

2!

∫
d4x d4y S2(x, y) + · · · .

Consider a following matrix element between some initial and final states |i〉 and |f 〉:
〈f |S|i〉 = δf i + g

∫
d4x〈f |S1(x)|i〉 +

g2

2!

∫
d4x d4y〈f |S2(x, y)|i〉 + · · · .

We have, from translational invariance,∫
d4x〈f |S1(x)|i〉 =

∫
d4x〈f |S1(0)|i〉ei(pf −pi).x = 〈f |S1(0)|i〉(2π)4δ4(pf − pi).

6 Comparison of amplitudes is more natural here, since the leading contribution from one-loop calculation depends
on the interference term which is linear in Mlocal or �Mnon-local.
7 Henceforth, we have often suppressed ‘tilde’ on g.
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Expressing x = (ξ + η)/2 and y = (η − ξ)/2, we have∫
d4x d4y〈f |S2(x, y)|i〉 =

(
1

2

)4 ∫
d4ξ d4η

〈
f

∣∣∣∣S2

(
η + ξ

2
,
η − ξ

2

)∣∣∣∣ i〉
=
(

1

2

)4 ∫
d4ξ d4η

〈
f

∣∣∣∣ eiP · η

2 S2

(
ξ

2
,−ξ

2

)
e−iP · η

2

∣∣∣∣ i〉
=
(

1

2

)4 ∫
d4ξ d4η

〈
f

∣∣∣∣ eipf · η

2 S2

(
ξ

2
,−ξ

2

)
e−ipi · η

2

∣∣∣∣ i〉
=
∫

d4ξ

〈
f

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ i〉 (2π)4δ4(pf − pi).

The S-matrix is related to the invariant matrix element Mf i as

〈f |S|i〉 ≡ Sf i = 〈f |i〉 + i〈f |T |i〉
= 〈f |i〉 + i(2π)4δ4(pf − pi)Mf i

Thus,

Mf i = −ig〈f |S1(0)|i〉 +
−ig2

2

∫
d4ξ

〈
f

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ i〉
+

−ig3

3!

∫
d4ξ d4η 〈f |S3 (0, ξ, η)| i〉 + · · ·

≡ M(1) + M(2) + M(3) + · · · .
Now, consider the exclusive scattering process: φ(k1) + φ(k2) → φ(p1) + φ(p2). The
differential cross-section reads

dσ

d3p1 d3p2
= 1

2

(2π)4δ4(pf − pi)

2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

|M|2 .

Here, pi = k1 + k2 and pf = p1 + p2 and v1,2 are velocities of the colliding particles and 1
2 is

the symmetry factor. (We are using the conventions as outlined in [17]). We integrate over p2

using the δ3(pf − pi). We express d3p1 = p2
1 dp1 d�, integrate over p1 to find,

dσ

d�
=
∫

p2
1 dp1

1

2

(2π)4δ(k10 + k20 − p10 − p20)

2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

|M|2 .

In the CM frame, k10 + k20 ≡ 2
√

k2 + m2 ≡ 2ωk and p10 + p20 ≡ 2
√

p2 + m2 = 2ωp. So that,

dσ

d�
= pωp

4

(2π)4

2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

|M|2 .

Here,

|M|2 =
∣∣∣∣−ig〈f |S1(0)|i〉 − i

g2

2

∫
dξ

〈
f

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ i〉 + · · ·
∣∣∣∣2

= g2|〈f |S1(0)|i〉|2 + g3 Re

[
〈f |S1(0)|i〉∗

∫
dξ

〈
f

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ i〉] + R

R are the O(g4) terms

R ≡ g4

4

∣∣∣∣∫ dξ

〈
f

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ i〉∣∣∣∣2
+ 2

g4

3!
Re

[
〈f |S1(0)|i〉∗

∫
d4ξ d4η〈f |S3(0, ξ, η)|i〉

]
. (15)
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The differential cross-section, now becomes
dσ

d�
= pωp

4
(2π)4

×
{
g2 |〈f |S1(0)|i〉|2 + g3 Re

[〈f |S1(0)|i〉∗ ∫ dξ
〈
f
∣∣S2

(
ξ

2 ,− ξ

2

)∣∣ i〉] + O(g4)
}

2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

.

Now,

iM = g〈p1p2|S1(0)|k1k2〉
is the lowest order amplitude which equals −6ig. Therefore it is required that

〈p1p2|S1(0)|k1k2〉 = −6i

Thus,

dσ

d�
= pωp

4

(2π)4
{
36g2 − 6g3 Im

[∫
dξ
〈
f
∣∣S2

(
ξ

2 ,− ξ

2

)∣∣ i〉] + O(g4)
}

2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

and subtracting the angular average of dσ
d�

dσ

d�
− dσ

d�
= pωp

4
(2π)4

×
{−6g3 Im

[ ∫
dξ
〈
f
∣∣S2
(

ξ

2 ,− ξ

2

)∣∣i〉− ∫
dξ
〈
f
∣∣S2
(

ξ

2 ,− ξ

2

)∣∣i〉] + O(g4)
}

2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

. (16)

Consider the following matrix element of H1 of equation (10):

〈p1p2|H1|k1k2〉 = i
∫

d4x d4y{〈p1p2|S2(x, y)|k1k2〉 − 〈p1p2 |T [S1(x)S1(y)]| k1k2〉}

= (2π)4δ4(pf − ki)i

{∫
dξ

〈
p1p2

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ k1k2

〉
−
∫

dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉}
.

We now integrate over p2 followed by p1 = |p1| as before to obtain,∫
p2

1 dp1 Re〈p1p2|H1|k1k2〉 = −(2π)4 pωp

2
Im

{∫
dξ

〈
p1p2

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ k1k2

〉
−
∫

dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉}
,

where we set p2 = k1 + k2 − p1. Left-hand side is a function of angular variables: �. We
subtract out the angular average to find,∫

p2
1 dp1 Re{〈p1p2 |H1| k1k2〉 − 〈p1p2 |H1| k1k2〉}

= −(2π)4 pωp

2
Im

{∫
dξ

〈
p1p2

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ k1k2

〉
−
∫

dξ

〈
p1p2

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ k1k2

〉}

+ (2π)4 pωp

2
Im

{∫
dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉
−
∫

dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)
]

∣∣∣∣ k1k2

〉}
.
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Now we employ (16) to obtain,∫
p2

1 dp1 Re
{〈p1p2 |H1| k1k2〉 − 〈p1p2 |H1| k1k2〉

}
= 1

3g3
2ωp1 2ωp2 |�v1 − �v2|2ωk1 2ωk2

[
dσ

d�
− dσ

d�
+ O(g4)

]

+ (2π)4 pωp

2
Im

{∫
dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉
−
∫

dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉}

= 32ω3p

3g3

[
dσ

d�
− dσ

d�
+ O(g4)

]

+ (2π)4 pωp

2
Im

{∫
dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉
−
∫

dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉}
. (17)

Causality necessarily requires that the left-hand side of (17) vanishes. On the right-hand side,
there are

(1) experimentally observable quantity, dσ
d�

− dσ
d�

,
(2) a theoretically calculable quantity (by a Feynman diagram calculation)

Im

{∫
d4ξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉

−
∫

d4ξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉}
and

(3) O(g4) and higher order terms from dσ
d�

− dσ
d�

in addition to

Im

{∫
d4ξ

〈
p1p2

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ k1k2

〉
−
∫

d4ξ

〈
p1p2

∣∣∣∣S2

(
ξ

2
,−ξ

2

)∣∣∣∣ k1k2

〉}
.

We shall calculate the second quantity in the coming section (please see section 5). We shall
also explain how and when the O(g4) term can be ignored.

5. Contribution of the second term in (17)

As seen in [13], the second term in (17) corresponds to the fish diagram with smeared
propagators shown below (see figure 2). It is calculated in the massless limit below: we
shall exhibit the details of calculation in appendix A. Here, we shall just summarize the result
of (A.1)

�(s, t, u) = 9g2

8π2

[
− ln

s

�2
− ln

t

�2
− ln

u

�2
+ constant

− 2
∞∑

n=1

1

(n + 1)(n!)

(( s

�2

)n

+

(
t

�2

)n

+
( u

�2

)n
)(

1 − 1

2n+1

)]
.
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Figure 2. The Feynman diagram equivalent to the second term
∫

dξ〈p1p2|T [S1(
ξ
2 )S1(− ξ

2 )]|k1k2〉.
Only the s-channel diagram is shown.

As we shall be interested in the nontrivial contribution arising from non-local effects, we
shall find it convenient to filter out the usual local effects. We parametrize the local part of the
above expression as

l(θ) = c1 + c2 ln(1 − cos2 θ).

Using (14),

l(θ) = c′
1 + c2

(
5
3P2(cos θ) + 9

10P4(cos θ) + 13
21P6(cos θ) + · · ·) .

So that, the quantity entering in equation (17) is

l(θ) − l(θ) = c2
(

5
3P2(cos θ) + 9

10P4(cos θ) + 13
21P6(cos θ) + · · ·) .

Now, consider

h(θ) = αP2 (cos θ) + βP4 (cos θ)

h(θ) is the simplest non-trivial even polynomial orthogonal to l(θ) − l(θ) provided
2
3α + 1

5β = 0.

We choose to integrate (17) with h(θ). Thus the CV signaling amplitude may be conveniently
as∫

d cos θh(θ)

{
32ω3p

3g3

[
dσ

d�

]
+ (2π)4 pωp

2
Im

{∫
dξ

〈
p1p2

∣∣∣∣T [S1

(
ξ

2

)
S1

(
−ξ

2

)]∣∣∣∣ k1k2

〉 }}
,

where we have dropped the two terms with angular averages as
∫

d cos θh(θ) × constant = 0.

6. O(g4) contributions

We shall calculate O(g4) terms in R of equation (15) and find the range of couplings and
energies when they are ignorable. Calculations of quantities required for this has already been
done in a local theory. As such quantities in a non-local theory will differ only by terms of
O
(

1
�2

)
from a local theory and we are interested only in an estimate of such terms in R, we

shall employ the local results for this purpose.

13
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Figure 3. Diagrams contributing to two particle matrix element of S3. Diagrams obtained by
interchanges of momentum labels are not shown.

Table 2. Comparison of S1S3-type terms with the leading non-local contribution.

p2

�2 0.1 0.2 0.4 0.8
a
(4,1)
2

anonlcal
2

0.07 0.01 0.0007 −0.0005

6.1. The S1S3-type terms

One of the contributions to dσ
d�

we have not taken account of is the O(g4) contribution coming
from a term of the kind S1S3 in R. To evaluate this we need to calculate O(g3) contribution
to the S-matrix coming from the two loop diagrams (see figure 3). These two loop diagrams
have already been computed in the context of the standard model [16] with the renormalization
convention which amounts to using a mass scale ∼m. We shall adopt the result to the case of
φ4 theory and employ them with our renormalization convention.

Contribution from S1S3 term in terms of Legendre coefficient turns out to be (see
appendix B for details)

a
(4,1)
2 = 81g̃4

64π4
a′

2,

where we have defined a′
2 in appendix B. To compare this particular O(g4) contribution to the

non-local term, we consider,

a
(4,1)
2

anon-local
2

= 9̃g2

16π2

a′
2[

1
3

(
p2

�2

)2 − 7
18

(
p2

�2

)3
+ 2

7

(
p2

�2

)4
+ O

(
p2

�2

)5]
with, 6g

16π2 = 0.001 (comparable to α
4π

in electrodynamics), we tabulate the ratio for different

values of p2

�2 = s
4�2 in table 2.

We saw earlier in section 3 that it was possible to discern CV for p2

�2 � 0.2. In the same
range of momenta, we find that contribution of this O(̃g4) term is small enough to be ignored.

6.2. The |S2|2 term

The contribution of this term is(
9̃g2

8π2
ln

stu

2s3
0

)2

.
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Table 3. Final comparison of neglected terms of O(̃g4) in (17) with the CV amplitude.

p2

�2 0.1 0.2 0.4 0.8

a
(4)
2 2.34 × 10−8 −3.42 × 10−8 −9.19 × 10−8 −1.49 × 10−7

|r| 0.05 0.03 0.016 0.007

This |S2|2 term contributes the following Legendre coefficient (see appendix C for details)

a
(4,2)
2 = 81g̃4

64π4
× a′′

2 .

Now, adding the Legendre coefficients to get the total contribution to R in O(g4)

a
(4)
2 = a

(4,1)
2 + a

(4,2)
2 = 81g̃4

64π4
(a′

2 + a′′
2 )

Comparison of non-local effects of O(g2) and local terms of next order is facilitated by looking
at the ratio r

r = a
(4)
2

anon-local
2

= 9̃g2

16π2

[a′
2 + a′′

2 ][
1
3

(
p2

�2

)2 − 7
18

(
p2

�2

)3
+ 2

7

(
p2

�2

)4
+ O

(
p2

�2

)5] .
We tabulate r for various p2

�2 and with 6g̃

16π2 = 10−3 in table 3.
Thus the contribution from the terms of O(g4) we neglected is indeed a few percent at

best in this range of p2

�2 and couplings.

7. Conclusions and future directions

7.1. Conclusions

We argued that physical theories may develop a small causality violation at high enough
energies; which could be due to diverse causes such as a fundamental length scale, composite
structure of standard model particles, etc. We wanted to study how it can be observed
experimentally. We considered as a model theory, the non-local scalar theory, which embodies
quantum violations of causality. We demonstrated that CV could be observed by usual
laboratory measurements which obtain dσ

d�
for the exclusive elastic process φφ → φφ.

Analysis of local contribution versus the non-local CV amplitude enabled one to conclude
that CV effects can be noticeable at s ∼ �2 where � is the large mass scale present in the
theory and a way to demonstrate its existence is via an analysis of the angular distribution of
scattering cross-section. We constructed an observable that would serve the purpose if higher
order effects are negligible. We analyzed these O(g4) terms and demonstrated that they are
indeed negligible compared to the CV terms at energies s � �2 and for a typical coupling
comparable to electromagnetic coupling α

4π
. A work, along the same lines, but applicable to the

realistic cases of experimentally observed exclusive processes e+e− → e+e−, e+e− → μ+μ−

and e+e− → τ +τ− is in progress.

7.2. Future directions

The above results show how we can relate any violation of causality to physical observables
and detect it, in principle, by experimental measurements. In a sense, however, the discussion
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is of pedagogical interest because the φ4 model does not represent reality: it is the simplest
model to do calculations in.

A much more realistic calculation would be that for a pure leptonic processes: they
should lead to similar conclusions, which however, can directly confront experiment. The
future electron–positron linear collider, ILC, which is upgradable to TeV scale might be able to
divulge substantial deviation from locality in the leptonic processes: e+e− → e+e−; e+e− →
μ+μ−; e+e− → τ +τ−. These processes are rather cleaner; all the channels consist of, a priori,
pointlike elementary particles. Because the reactions are exclusive, it will be easier to pin down
acausal effects, which presumably stem from the non-local structure of the observed particles
and/or their interactions: from this view-point, we are performing analogous calculations for
exclusive processes: e+e− → e+e−; e+e− → μ+μ−; e+e− → τ +τ−.
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Appendix A

As remarked in section 5, the second term in (17) corresponds to the fish diagram with smeared
propagators shown there. We calculate it in the massless limit below: one finds

�s = 9g2

8π2

∫ ∞

1
dτ1

∫ ∞

1
dτ2

e− (P )2

�2
τ1τ2
τ1+τ2

(τ1 + τ2)2
,

where P 2 = −(p1 + p2)
2 = −s and is positive in Euclidean space. We employ [6],∫ ∞

1
dτ1

∫ ∞

1
dτ2 =

∫ 1

1
2

dx

∫ ∞

1
1−x

τ dτ +
∫ 1

2

0
dx

∫ ∞

1
x

τ dτ

(where τ = τ1 + τ2 and x = τ2
τ

) and find

�s = 9g2

8π2

(∫ 1

1
2

dx

∫ ∞

1
1−x

dτ +
∫ 1

2

0
dx

∫ ∞

1
x

dτ

)
e− P 2

�2 τ(1−x)x

τ

setting t = P 2

�2 τ(1 − x)x

�s = 9g2

8π2

(∫ 1

1
2

dx

∫ ∞

P 2x

�2

dt +
∫ 1

2

0
dx

∫ ∞

P 2(1−x)

�2

dt

)
e−t

t

= 9g2

8π2

∫ 1

1
2

dx �

(
0,

P 2x

�2

)
+
∫ 1

2

0
dx �

(
0,

P 2(1 − x)

�2

)
;

= 9g2

4π2

∫ 1

1
2

dx �

(
0,

P 2x

�2

)

= 9g2

4π2

∫ 1

1
2

dx

[
− ln

P 2x

�2
− γ −

∞∑
n=1

(−P 2x
�2

)n
n(n!)

]

= 9g2

8π2

(
− ln

s

�2
+ constant − 2

∞∑
n=1

1

n(n + 1)!

( s

�2

)n
(

1 − 1

2n+1

))
,

16



J. Phys. A: Math. Theor. 42 (2009) 065401 A Haque and S D Joglekar

where � (n, z) is the incomplete �-function

�(n, z) ≡
∫ ∞

z

dt

t
tn e−t .

Adding up s, t, u-channels together,

�(s, t, u) = 9g2

8π2

[
− ln

s

�2
− ln

t

�2
− ln

u

�2
+ constant

− 2
∞∑

n=1

1

(n + 1) (n!)

(( s

�2

)n

+

(
t

�2

)n

+
( u

�2

)n
)(

1 − 1

2n+1

)]
. (A.1)

We have further dealt with (A.1) in section 5.

Appendix B

The leading terms in the amplitude A(s, t, u) comes from the ln2 s, ln2 t, ln2 u terms for
s large. Keeping these terms, and using the renormalization convention of [16], the full
amplitude A(s, t, u) is (here, ŝ = s

m2 etc)

A(s, t, u) = −6g +
g2

16π2
[−18(ln(−ŝ) + ln(−t̂ ) + ln(−û))] (B.1)

+
g3

(16π2)2
[−162(ln2(−ŝ) + ln2(−t̂ ) + ln2(−û)) + · · ·] (B.2)

≡ −6g + g2a + g3b, (B.3)

where

a = 1

16π2

[
−18

(
ln

(−s

m2

)
+ ln

(−t

m2

)
+ ln

(−u

m2

))]
b = 1

(16π2)2

[
−162

(
ln2

(−s

m2

)
+ ln2

(−t

m2

)
+ ln2

(−u

m2

))
+ · · ·

]
.

We wish to re-express A(s, t, u) in terms of g̃ rather than g. We define g̃ by evaluating
Re[A(s, t, u)] at s = −2s0 + 2m2, t = u = s0 + m2. We have,

−6g̃ = −6g + g2ã + g3b̃ + O(g4), (B.4)

where

ã = 1

16π2

[
−18

(
ln

(
2s0

m2

)
+ 2 ln

(
s0

m2

))]
b̃ = 1

(16π2)2

[
−162

(
ln2

(
2s0

m2

)
+ 2 ln2

(
s0

m2

))
+ · · ·

]
.

Now using (B.4) iteratively, we obtain g in terms of g̃ and find

−6g = −6g̃ − g̃2ã − g̃3

(
ã2

3
+ b̃

)
+ O(g̃4). (B.5)

So that we can express A (s, t, u) of (B.3) in terms of g̃ and find

A(s, t, u) = −6g̃ − g̃2(ã − a) − g̃3

(
ã2

3
+ b̃ − b − ãa

3

)
+ o(g̃4), (B.6)
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where

ã − a = 1

16π2

[
−18

{
ln

(
2s0

s

)
+ ln

( s0

t

)
+ ln

( s0

u

)}]
.

To calculate the relevant matrix element of S3, we need to focus our attention on the coefficient
of g̃3 and express it as a function of θ . We find,

ã2

3
+ b̃ − b − ãa

3
= 1

(16π2)2

{
108

[(
ln

(
2s0

m2

)
+ 2 ln

(
s0

m2

))2

−
(

ln

(
2s0

m2

)
+ 2 ln

(
s0

m2

))(
ln

(−s

m2

)
+ ln

(−t

m2

)
+ ln

(−u

m2

))]
− 162

(
ln2

(
2s0

m2

)
+ ln2

(
s0

m2

)
+ ln2

(
s0

m2

)
− ln2

(−s

m2

)
− ln2

(−t

m2

)
− ln2

(−u

m2

))}
= 1

(16π2)2

{
162(ln2(1 − cos θ) + ln2(1 + cos θ))

+ 108 ln

(
4p6

s3
0

)
ln(1 − cos2 θ) + (θ − independent terms)

}
.

Thus,

A(s, t, u) = −6g̃ − g̃2

16π2

[
−18

{
ln

(
2s0

s

)
+ ln

( s0

t

)
+ ln

( s0

u

)}]
− g̃3

(16π2)2

{
162(ln2(1 − cos θ) + ln2(1 + cos θ))

+ 108 ln

(
s3

16s3
0

)
ln(1 − cos2 θ) + (θ − independent terms)

}
+ o(g̃4).

Suppose, we choose the renormalization scale s0 = 0.1�2. The angular dependence of the
relevant matrix element of S3 is determined by

g(θ) =
[

2

[
ln

(
s

0.2 × 3
√

2�2

)]
ln(1 − cos2 θ) + ln2(1 + cos θ) + ln2(1 − cos θ)

]
we define,

a′
2 = 5

2

∫ 1

−1
d cos θP2(cos θ)g(θ).

We find,

a′
2 = 5

2
× 49

18
+ 2 ln

(
s

0.252�2

)(−5

3

)
= 6.81 − 3.33 ln

(
15.87

p2

�2

)
putting in some values for p2/�2, we find Legendre coefficient a′

2 for some values of p2

�2 in
table B1.
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Table B1. Legendre coefficient a′
2 for some values of p2

�2 .

p2

�2 0.1 0.2 0.4 0.8

a′
2 5.27 2.96 0.66 −1.65

Table C1. Legendre coefficient a′′
2 for some values of p2

�2 .

p2

�2 0.1 0.2 0.4 0.8

a′′
2 −1.51 −8.44 −15.4 −22.3

We shall further employ these results in section 6.1 to draw conclusions.

Appendix C

In this appendix, we shall calculate the contribution of |S2|2 term; further dealt in section 6.2.
We first express the contribution of this term as a function of θ , and find

=
(

9̃g2

8π2
ln

stu

2s3
0

)2

=
(

9̃g2

8π2

)2 [
ln2

(
s3

8s3
0

)
+ ln2(1 − cos θ) + ln2(1 + cos θ)

+ 2 ln(1 − cos θ) ln(1 + cos θ) + 2 × 3 ln

(
s

2s0

)
ln(1 − cos2 θ)

]
.

The relevant angular dependent part is given below

f (θ) =
[

ln2(1 − cos θ) + ln2(1 + cos θ) + 2 ln(1 − cos θ) ln(1 + cos θ)

+ 2 × 3 ln

(
s

2s0

)
ln(1 − cos2 θ)

]
.

Defining

a′′
2 = 5

2

∫ +1

−1
d cos θP2(cos θ)f (θ),

we obtain,

a′′
2 = 5

2
× 49

18
− 25

18
+ 2

(
3 ln

s

0.2�2

)(−5

3

)
= 5.42 − 10

(
ln

20p2

�2

)
.

We complete the table of p2

�2 versus a′′
2 in table C1.

We shall further employ these results in section 6.2 to draw conclusions.
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